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Abstract. The results of a numerical simulation of the surface structure of an orthogonally
intersecting twin domain wall in a ferroelastic lattice are presented. The twin wall is seen at the
surface as a pitched roof structure. The centre of the wall appears as a rounding of the ridge.
The thickness of the ridge is the same as the thickness of the twin domain wall in the bulk. In
contrast to this simple shape of the relaxed surface, the elastic response is rather exotic. We
predict that AFM images taken in tapping mode should show a narrow groove at the middle of
the ridge with two hill-like features on either side of the groove. Consequences for the chemical
activity of the sites close to the ridge are discussed.

Domain patterns are often a desirable characteristic of device materials, notably in
ferroelectrics and ferroelastics. The elementary process for the pattern formation is, in
many cases, ferroelastic twinning [1]. Typical examples for twin related patterns are high-
Tc superconductors, relaxor materials, perovskite substrates, palmierites, leucites, quartz and
feldspars [1]. Pattern formation can be spontaneous, as well as induced by some external
field exerted on a sample or a device material [1].

Walls between two twin-related domains are areas of high chemical reactivity [2], fast
diffusion and electronic properties which can be quite different from those of the bulk
material. With respect to many physical and chemical properties, twin walls behave like
grain boundaries, with the advantage that twin walls can be tailored easily [1], especially
if of ferroelastic origin. The main disadvantage of twin walls is that they are difficult to
investigate, despite the fact that they appear as distinctive features in transition electron
microscopical (TEM) images [3]. Any fine structures may be significantly changed when
samples are prepared as atomically thin slabs or wedges for TEM studies which makes their
study virtually impossible. A more subtle mode of investigation uses x-ray diffraction,
although this technique does not yet allow the analysis of the chemically important
intersection of a twin wall with the surface of a sample [4]. The third mode of investigation
is by atomic force microscopy or related techniques which are sensitive to spatial variation
in surface topography or physical properties of material [5, 6, 7, 8]. These latter techniques
have, despite several attempts, failed to precisely determine any fine structure of the twin
walls close to surfaces.

Analytically, the ferroelastic materials have been well described using the Landau–
Ginzburg phenomenological model, which expresses the Gibbs free energy as a polynomial
in the order parameter and its spatial derivative [1]. This method, though, has not been
employed to deal with the details of the surface properties of domain walls. The wall
profile at the surface is in fact a double relaxational problem, including both the surface
and the domain wall relaxation. Each of these problems has been successfully solved using
the Landau–Ginzburg model, but only when approached separately. The complexity of
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the problem arises from the inherent multi-dimensionality when surface and domain wall
relaxations are considered concurrently [9].

In this letter we show that a numerical simulation of a two-dimensional twinning lattice
provides a clear and precise insight into the structure of a twin domain wall near and at the
surface.

The imaging techniques predominant in the study of surface properties of domain walls
do not generally image the real space topography of the surface [6]. Here we show that
there are two features that can be identified as fingerprints of a twin domain wall at the
surface. In real space, the fingerprint is a rounded wedge. The other, more interesting,
fingerprint is a groove, with a ridge on both sides, obtained as an elastic response to a force
normal to the surface.

The model we use to simulate twin domains and the wall between them is a simple
two-dimensional lattice that represents a hypothetical plane perpendicular to a twin wall in
the ferroelastic phase. The twin domains are generated by the elastic shear deformation of
the square unit cells. Such deformation (i.e. spontaneous strain in a ferroelastic material) is
rather general as discussed above, and is always the reason for ferroelastic twinning [1]. In
our generic model [10, 11] we represent atoms as points interacting via elastic potentials.

Each point at the site(i, j) has two degrees of freedom, the two coordinatesXi,j and
Yi,j . In order to generate surface relaxations it is essential that interatomic interactions
extend to, at least, two interatomic layers perpendicular to the surface [12]. Therefore,
each lattice point(i, j) interacts explicitly with the points populating its third and lower
coordination shells, and interactions for larger distances are truncated. To successfully
describe the structure of a domain wall at the surface, we needed to simulate only two free
surfaces, those perpendicular to the wall itself. This approach yields three distinctive classes
of points in the model, those in the bulk, interacting with twelve neighbours, then those in
the layer next to the surface, interacting with eleven neighbours, and finally, the points in
the surface layer having only eight neighbours to interact with. Lennard-Jones potentials are
used for second- and third-nearest-neighbour interactions, and harmonic potentials are used
for nearest neighbour interactions. We used a harmonic potential in order to preserve the
lattice configuration, effectively keeping the lattice parameter at a constant value throughout
the simulation. The potential energy of a point(i, j) can be written as:

Up(i, j) =
p∑
n=1

Un(|r|) (1)

where the subscriptp denotes the position of the point and the number of neighbours it
interacts with:

p =
 12 bulk

11 next to surface
8 surface

andUn(|r|) is:

Un(|r|) =
{

1
2 κ (|r| − a)2 nearest neighbours

ε∗
[
r∗12

|r|12 − 2 r∗6

|r|6
]

2nd and 3rd neighbours

wherer is the distance vector,r∗ is the position of the Lennard-Jones potential minimum,
andκ andε∗ are the energy parameters.

The ground state of the lattice is characterized by the shear angle, a function ofr∗/a, and
the lattice parameter, a function ofε∗/κ. If r∗ > a, the shear angle is non-zero. In that case,
the second neighbours lie in the region where the second derivative of the Lennard-Jones
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potential is negative, and the energy of a sheared square is lower than that of an unsheared
one. We chose the shear angle to be 3◦ (r∗ = 1.2864483,a = 1), in agreement with
some representative real materials [13]. The energy parameters were adjusted accordingly.
Domain structures and surface relaxation were then calculated by numerical minimization
of the total energy functional:

δ

∫
dr3

{∑
i,j

Up(i, j)
}
= 0 (2)

whereUp(i, j) is as defined in (1) and the sum extends over all lattice points.
A combination of two different boundary conditions was used in the simulation with

free surface boundary conditions at the [010] and [010] surfaces. The [100] and [100] edges
of the simulated lattice were treated with derivative boundary conditions.

For elastic properties, the free surface boundary conditions might not seem appropriate,
especially for non-large sizes of the simulated lattice, due to the long-range character of
elastic forces. Since the essence of the problem addressed is the free surface, we were
forced to use the free surface boundary conditions, and avoid problems by choosing a
lattice large enough to avoid the surface–surface interaction, but within the scope of the
available hardware on which the simulation has been run.

The derivative boundary conditions were the simplest to mimic the infinite extension of
the simulated lattice in the given direction. This was crucial to allow the surface to relax
freely, uninfluenced by any anomalies, with the exception of the domain wall simulated.

The present model has been studied by the molecular dynamics technique. We have not
included any thermodynamic fluctuations, and have effectively simulated a system far from
the ferroelastic–paraelastic transition temperatureTc. In order to study twin walls, without
the influence of boundaries parallel to the walls and surface relaxation extending to∼10%
of the sample, a minimum of 80000 points were considered for a two-dimensional layer
perpendicular to the surface and the twin wall.

Lattices simulated had initial conditions of no surface relaxation and infinitely narrow
domain walls. We simulated a single wall in the middle of the lattice as well as an array
of six walls distributed evenly throughout the simulated lattice, since in real materials
microstructure usually forms a striped pattern, with domains of different orientations
repeating periodically [14].

Since the simulation is only dealing with real space positionsXi,j andYi,j of each point
(i, j) in the lattice, the output is a set of coordinates. This data was then manipulated to
yield the(xx − yy) component of the strain field throughout the simulated relaxed lattice.

The overall change in the lattice due to the relaxation effects is most easily observed in
the distribution of the order parameter (proportional to the strain in the case of ferroelastics).
Initially, the lattice was completely unrelaxed, with a domain wall between the twins of
opposite orientations. The final strain distribution shows the consequences of the wall and
surface relaxations (figure 1).

Far from the surface (in the bulk of the crystal) the wall relaxation follows the
phenomenological Landau–Ginzburg model for the width of a twin domain wall [1, 15]:

Q(x) = Q0 tanh
[ x
W

]
whereQ is the magnitude of the order parameter (strain),Q0 the value of the order parameter
in the bulk, x the distance from the centre of the wall, andW the width of the domain
wall. We have fitted the domain wall widthW to our data and found it to beW=10,
measured in unit cells. This is in general agreement with the values for real materials
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Figure 1. Distribution of the order parameterQ at the surface of the lattice (first 50 layers).
Lines represent constantQ, with Q0 = 1 in the bulk. There are three lines in the middle of the
twin domain wall that are not labelled, they represent theQ values of 0.40, 0.00, and−0.40
respectively. Notice the steepness of the gradient ofQ through the twin domain wall. The two
structures represent sheared twin atomic configurations in the bulk (far from the twin domain
wall and surfaces).

[13, 15, 16, 17]. Close to the surface the wall apparently widens in a characteristic trumpet-
like shape, a consequence of both surface and domain wall origins of the relaxation effects.
This can be seen from the widening of areas of constant strain. Still, the points of the
maximum interaction between the surface and twin domain wall relaxation, where the lines
of equal strain have the largest curvature, form a needle-like shape pointing towards the
surface, a consequence of the surface relaxation being dominant at the surface and decreasing
away from it. A calculation of the domain wall width at the surface, using the following
expression:

Ys(x) = Y0+
∫ x

0
Qs(t)dt

whereYs is the real space position of the particles in the surface layer,Y0 is the real space
position of the particle at the centre of the domain wall, andQs is the distribution of the
order parameter at the surface, has indicated that there is no appreciable difference between
W andWs .

The surface relaxation depthλ is found to be at a minimum close to the twin domain
wall and increasing with distance away from it. At an infinite distanceλ would reach
its maximum valueλmax , which is the surface relaxation depth of the lattice if no twin
domain walls are present. Consequently, in materials with microstructure formed by an
array of periodic twin domain walls, the depth of surface relaxationλarray is suppressed,
λarray < λmax . The order parameter at the surfaceQs exhibits exactly opposite behaviour.

The relation betweenW andWs , the domain wall widths in the bulk and at the surface,
can most easily be seen if plotted on the same graph. The effect of the surface relaxation
is clearly visible as the order parameter at the surfaceQs never reaches the bulk valueQ0

(figure 2).
The distribution of the square of the order parameterQ2

s at the surface shows the structure
that some of the experimental works have been reporting [18, 19], namely a groove centred
at the twin domain wall with two ridges, one on each side.

The real space topography of the surface is determined by both sources of relaxation—
twin domain wall and the surface. These are distinct and when considered separately, we
found the effect due to the wall relaxation larger by about three orders of magnitude than
that due to the surface relaxation (figure 3).
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Figure 2. Qs/Q0 (solid line, proportional to the strain at the surface) andQ/Q0 (dashed line,
proportional to the strain in the bulk). The widths of the twin domain wall in the bulk,W, and
at the surface,Ws , are the same, as is the width of the rounded at the surface directly above the
twin domain wall.

The lattice features in the bulk are dominated exclusively by the domain wall relaxation,
as the surfaces are too far away. This has provided us with a precise description of the
relaxation due to the twin domain wall. By effectively removing this from the relaxed
surface, we were left with the effects of the surface relaxation only. These yield a groove,
centred at the twin domain wall, without any extra features. One recent analytical work
[9] has in fact considered only the surface relaxation effects, while the much bigger wall
relaxations were frozen, and a groove at the surface predicted, just as the one we obtained
by removing the wall relaxation effects (figure 3). This result is incorrect, as it does not
consider the problem completely. A groove only appears when the domain wall relaxation
is ignored, yielding a wrong result, as the effects due to the wall relaxation are three orders
of magnitude larger (displacements of particles due to the surface relaxation are∼ 10−3a,
whereas displacements due to the wall relaxation are∼ a, as can be seen in figure 3). In fact,
the wall relaxation completely dominates the topography of the twin domain wall surface
structure, entirely masking the groove-like effects originating in the surface relaxation, thus
creating the surface rounding centred at the twin domain wall (figure 3). A recent AFM-
tapping mode study [5] has identified this feature. It reports a ‘nose’ effect on the surface,
that we have not been able to verify.

In an attempt to predict the possible experimental results of AFM investigations of the
surface structure of the twin domain wall, we emulated the effect that the tip at the end
of an AFM cantilever has on the surface of the material. This we did by displacing each
particle in the surface layer by 10−8a in the−ŷ direction. We then calculated the lateral and
normal components of the reactive force. The lateral force distribution shows a dependence
similar to that of the order parameterQs (figure 4). The normal force distribution has a
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Figure 3. The surface topography (solid, right scale), and groove due to the wall relaxation
(dotted, left scale), invisible in the topography of the surface. Notice the order of magnitude of
surface deformation due to the domain wall.

profile similar to that of the square of the order parameter,Q2
s , with ridges on both sides

of a groove (figure 4).
The change in the sign of the order parameter at the surface has been observed (for

ferroelectrics) by using a mode of imaging developed for the detection of static surface
charge [7]. For ferroelastics discussed here, this corresponds to the profile of the lateral
reactive force. The SFM non-contact dynamic mode images [8] would correspond to the
distribution of the normal reactive force. The divergence of the lateral force distribution
away from the centre of the wall can be attributed to the simulated infinite extension of
the lattice. In the simulated array, the lateral component of the force reached a finite value
between two adjacent domain walls.

The results of this simulation can be used as a guidance for the future experimental work.
In order to determine the twin domain wall widthW in the bulk, one only needs to determine
the characteristic widthWs of the surface structure of the domain wall. Previously, these
features of the twinning materials were investigated using mainly x-ray techniques. We
have shown that the only necessary ingredient for the determination of the twin domain
wall widthW are the real space positions of the particles in the surface layer.

In addition, we conclude that there are two levels of structure at the surface of the twin
domain wall. The obvious structure, arising from the topography of the surface at the twin
domain wall interface, is shown to be mainly featureless, apart from the rounding effects
centred at the twin domain wall. We have shown that there is an underlying more interesting
structure, its image obtainable via the elastic response of the particles in the surface layer.
This structure consists of a groove centred at the surface of the twin domain wall and two
ridges at the sides of the groove. Essentially it is a consequence of the strain distribution
at the surface, itself a result of double relaxation originating from the surface and the twin
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Figure 4. Distribution of the normal (solid line) and lateral (dashed line) response to normal
displacement of the surface particles. Lateral response can be useful for observing the domain
structure, while normal response can be useful for the observation of twin domain walls.

domain wall.
Finally, we comment on the chemical reactivity profile of the twin domain wall interface

at the surface. Intuitively, one would expect the chemical reactivity of the surface to be the
largest at the centre of the twin domain wall, falling off as the distance from the centre of
the wall increases. In order to determine the chemical reactivity of the surface, one has to
investigate the profile of the square of strain at the surface [20]. Contrary to the expected
behaviour, chemically most reactive areas are at the sides of the twin domain wall, and the
centre of the twin domain wall at the surface is the least reactive area. The reactivity does
fall off as the distance from the centre of the wall increases, as expected, but only after it
has reached a maximum at a distance of∼ 3W.

If such a structure is exposed to particle adsorption (e.g. in the MBE growth of thin
films on twinned substrates) we expect the sticking coefficient to vary spatially. In one
scenario, adsorption may be enhanced on either side of the wall while being reduced at the
centre.

The production runs of the simulation were carried out on the Hitachi S-3600/180 vector
supercomputer, a part of the Cambridge High Performance Computing Facility.
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